Instrument Incubator Program

INFLAME

In-situ Net FLux witin the AtMosphere of the Earth

Marty Mlynczak, Dave Johnson, Ed Kist, Dave Kratz

NASA Langley Research Center

- Science Need for Net Flux Measurements
- Overview of Net Flux Measurements
- Historical Background
- The INFLAME Concept
- Current Status

Overview of Earth's Radiation Budget

Kiehl and Trenberth, 1997

Atmospheric Heating and Cooling Rates

$$F \uparrow (z) = 2\pi \int_{0}^{1} I(z) \mu \, d\mu$$

$$F \downarrow (z) = 2\pi \int_{-1}^{0} I(z) \mu \, d\mu$$

$$F_{net}(z) = F \uparrow (z) - F \downarrow (z)$$

$$\frac{\partial T}{\partial t} = \frac{1}{\rho C_p} \frac{\partial F_{net}(z)}{\partial z}$$

Require an instrument capable of *directly* measuring the net flux

Infrared Cooling Rate

INFLAME addresses a fundamental aspect of atmospheric radiation:

Measurement of the rates of heating & cooling of the atmosphere by visible and infrared radiation

Every atmospheric model has essentially 3 equations

- Momentum: (F = ma)

- Continuity: (Conservation of mass)

- Energy: (First Law of Thermodynamics)

Energy equation requires knowledge of rate at which atmosphere heats and cools

- Radiation
- Latent process (water condensation/evaporation)
- Conduction, etc.

The Suomi "Economical Net Flux Radiometer"

Contemporary Approaches to Net Flux Measurement

- Involve radiometric measurements from aircraft
 - Measure upwelling and downwelling streams of radiation
 - Sometimes with two separate instruments
 - Difference the two measurements to obtain net
- Drawbacks
 - Requires high absolute calibration
 - Few percent uncertainty in calibration results means error in net flux is larger than net flux itself
 - Often radiance and not flux measured
 - Requires scene-dependent and wavelength-dependent radiance to flux conversion

The INFLAME Concept and Vision

"An Economical Net Flux Interferometer"

- Use low-resolution Fourier transform spectrometer to measure <u>directly</u> the difference between upwelling and downwelling radiation
- Anticipate that systematic errors will be reduced by differencing signals optically rather than by subtracting signals as measured by independent detector systems
- Winston cones at inputs gather radiation over 2π steradian, cosine weighted, as needed for flux and net flux measurements

INFLAME will directly measure the net flux

The INFLAME Concept and Vision

"An Economical Net Flux Interferometer"

- Develop two separate FTS systems, one for infrared radiation, one for visible radiation
- Mount on wing tip pods of a UAV
- Cycle up and down in altitude recording vertical profile of net flux
- Derivative of net flux w/r/t altitude is the atmospheric heating rate due to radiation
- Small enough, and low cost, to enable several to be deployed at once to address issues of cloud noise, inhomogeneous nature of aerosol layers, etc.

INFLAME – Reverse View

INFLAME – Nominal Concept in Housing

Input Radiation from Atmosphere 2π Steradian

Input to FTS

Winston cone "used In reverse" collimates hemisphere of atmospheric radiation for input to FTS

To measure *flux*, Winston cone must provide cosine weighting to each pencil of radiation

$$F \downarrow (z) = 2\pi \int_{-1}^{0} I(z) \,\mu \,d\mu$$

$$\mu = \cos \Theta$$

Winston Cone Angular Response

INFLAME RAY TRACE (6/2/2006 DATA)

INFLAME – Vital Statistics

- Mass 15 kg per sensor
 - Includes mass of vacuum housing
- Power
 - Maximum (peak) 250 W keeps heaters running
- Data Rate
 - 14 Kbps
- Optical Path Difference
 - $-7.5 \, \text{mm}$
 - Allows mirror translation with accurate piezoelectric drive
- Spectral Resolution
 - 67 cm⁻¹ may be able to increase to ~ 20 cm⁻¹
- Volume
 - Approximately 1 ft³

• Status

- Electronics design nearly complete
- Optical design 100% complete tolerance analysis underway
- Site visit (4/2006) to General Atomics for Predator B
- Corner cube translation stage selected
- Moving to PDR / Authority to Proceed to Year 2 / October 2006

Acknowledgements

- NASA ESTO and IIP Program
- NASA Science Mission Directorate
- NASA Langley Research Center

Summary

- INFLAME addresses a fundamental (and difficult) problem in atmospheric radiation – the measurement of heating and cooling rates within the atmosphere
- Use FTS to directly measure the net flux via optically "chopping" the two beams and determining their difference
- Many of systematic uncertainties cancel out, reducing requirements on absolute accuracies
- INFLAME will be UAV-borne, ideal for studying effects of pollution and aerosols on radiation, providing fundamental verification of radiative transfer codes for climate models

General Atomics Predator-B UAV Under Consideration for INFLAME

Backups

INFLAME RAY TRACE COMPOSITE UP/DOWN SWL (6/2/2006 DATA)

INFLAME RAY TRACE COMPOSITE SIDE VIEW (6/2/2006 DATA)

CORNER CUBE VIEWS

CORNER CUBE FOCAL POINT

PIEZO-NANO STAGE 2.5 KG MASS

